
HW6: Reinforcement Learning (Solution)
CS 4300: Artificial Intelligence Tucker Hermans
University of Utah

1 TD and Q in Blockworld

Consider the following gridworld:

Suppose that we run two episodes that yield the following sequences of (state, action, reward) tuples:

S A R S A R
(1,1) up -1 (1,1) up -1
(2,1) left -1 (1,2) up -1
(1,1) up -1 (1,3) right -1
(1,2) up -1 (2,3) right -1
(1,3) up -1 (2,3) right -1
(2,3) right -1 (3,3) right -1
(3,3) right -1 (4,3) exit +100
(4,3) exit +100 (done)

(done)

1. According to model-based learning, what are the transition probabilities for every (state, action, state)
triple. Don’t bother listing all the ones that we have no information about.

• T((1,1),up ,(2,1)) =1/3

• T((1,1),up ,(1,2)) =2/3

• T((2,1),left ,(1,1)) =1

• T((1,2),up ,(1,3)) =1

• T((1,3),up ,(2,3)) =1

• T((1,3),right,(2,3)) =1

• T((2,3),right,(2,3)) =1/3

1



• T((2,3),right,(3,3)) =2/3

• T((3,3),right,(4,3)) =1

2. What would the Q-value estimate be if SARSA were run to generate these same trajectories? Assume
all Q-value estimates start at 0, a discount factor of 0.9 and a learning rate of 0.5. Again, don’t bother
listing all of the cases where we don’t have data.

Remember: Q(s, a)← (1− α)Q(s, a) + α(r(s, a, s′) + λQ(s′, a′)); α← 0.5; λ← 0.9

Sequence of updates:

(a) Trial 1

i. Q((1, 1), up) = (1.0− 0.5) · 0.0 + 0.5 · (−1 + 0.9 · 0.0) = −0.5
ii. Q((2, 1), le f t) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · (−0.5)) = −0.725

iii. Q((1, 1), up) = 0.5 · (−0.5) + 0.5 · (−1 + 0.9 · 0.0) = −0.75
iv. Q((1, 2), up) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · 0.0) = −0.5
v. Q((1, 3), up) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · 0.0) = −0.5

vi. Q((2, 3), right) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · 0.0) = −0.5
vii. Q((3, 3), right) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · 0.0) = −0.5

viii. Q((4, 3), exit) = 0.5 · 0.0 + 0.5 · (100 + 0.9 · 0.0) = 50

(b) Trial 2

i. Q((1, 1), up) = 0.5 · (−0.75) + 0.5 · (−1 + 0.9 · −0.5) = −1.1
ii. Q((1, 2), up) = 0.5 · (−0.5) + 0.5 · (−1 + 0.9 · 0.0) = −0.75

iii. Q((1, 3), right) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · −0.5) = −0.725
iv. Q((2, 3), right) = 0.5 · −0.275 + 0.5 · (−1 + 0.9 · −0.275) = −1.2125
v. Q((2, 3), right) = 0.5 · −0.76125 + 0.5 · (−1 + 0.9 · −0.5) = −1.105625

vi. Q((3, 3), right) = 0.5 · −0.5 + 0.5 · (−1 + 0.9 · 50) = 21.75
vii. Q((4, 3), exit) = 0.5 · 50 + 0.5 · (100 + 0.9 · 0.0) = 75

Final values:

• Q((1, 1), up) = 0.5 · (−0.75) + 0.5 · (−1 + 0.9 · −0.5) = −1.1

• Q((1, 2), up) = 0.5 · (−0.5) + 0.5 · (−1 + 0.9 · 0.0) = −0.75

• Q((1, 3), right) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · −0.5) = −0.725

• Q((2, 1), le f t) = 0.5 · 0.0 + 0.5 · (−1 + 0.9 · (−0.5)) = −0.725

• Q((2, 3), right) = 0.5 · −0.76125 + 0.5 · (−1 + 0.9 · −0.5) = −1.2125

• Q((3, 3), right) = 0.5 · −0.5 + 0.5 · (−1 + 0.9 · 50) = 21.75

• Q((4, 3), exit) = 0.5 · 50 + 0.5 · (100 + 0.9 · 0.0) = 75

3. Suppose that we run Q-learning. However, instead of initializing all our Q values to zero, we initialize
them to some large positive number (“large” with respect to the maximum reward possible in the
world: say, 10 times the max reward). I claim that this will cause a Q-learning agent to initially explore
a lot and then eventually start exploiting. Why should this be true? Justify your answer in a short
paragraph.

If we start all the Q values out higher than the max reward, then for most of them, as we learn
and experience the world, the values will decrease. So if theres some state-action pair (s, a) that
weve already explored, our Q value will have likely dropped from its initial value. This means
that for some other, unexplored action a 0 , the Q value for (s, a 0 ) will remain large and therefore

2



well choose to take a 0 instead of a. This leads to a large amount of exploration.

3


