
SHOWRUNNER: A Tool for Storyline
Execution/Visualization in 3D Game Environments

Rushit Sanghrajka, R. Michael Young, Brian Salisbury, and Eric W. Lang

University of Utah, Salt Lake City, UT
rush.sanghrajka@utah.edu

young@eae.utah.edu
salisbury@eae.utah.edu
ewlang@cs.utah.edu

Abstract. We introduce SHOWRUNNER , a tool for visualizing story world exe-
cution within a 3D game environment. SHOWRUNNER takes as input an abstract,
declarative specification of a story script and a set of mappings between terms in
the story and data elements in the game engine and executes the story’s actions,
using virtual cameras to film and present the action to a user. The implementa-
tion details on the working of the tool, as well as instructions on how users with
various design and API constraints can utilize the tool are discussed in this paper.

Keywords: Story execution · game environments · cinematic visualization of
stories

1 Introduction

The domain of computational narrative is growing steadily, using algorithmic ap-
proaches to construct plot and narrative. An important capability for systems that syn-
thesize stories is to be able to present the output of a story’s action sequences to hu-
man users in some conventional narrative medium. We have developed a tool called
SHOWRUNNER that allows story action sequences generated by external systems (e.g.,
narrative planners, screenwriting graphical user interfaces, or human editors) to be auto-
matically executed within a 3D virtual world, creating a machinima-based visualization
for the action sequence.

SHOWRUNNER provides a specific story world built within a commercial 3D game
engine (i.e., Unity) and a means for reading in a story line and a mapping used to trans-
late from some external naming of story entities and the internal game engine entities in
the game engine’s data model. In this sense, SHOWRUNNER abstracts away the details
of the game engine’s execution of story actions and allows some exogenous system or
a human author to specify the dynamics of a story in a declarative language appropriate
for the external model’s representational needs. Our intent in building SHOWRUNNER is
to increase the accessibility of a 3D game engine as a resource for visualization for in-
telligent story generators, although the interface SHOWRUNNER provides can be used
by any external source capable of creating story specifications. Further, SHOWRUN-
NER is extensible, in that developers wishing to add new scenes, set elements, objects,



2 Sanghrajka et al.

actions and animations can create and incorporate that content via Unity’s development
tools.

This paper details the design and functionality of the SHOWRUNNER system, and
provides information about how SHOWRUNNER can be used by researchers in order to
visualize story execution from a variety of input sources.

2 Related Work

A number of previous projects have developed the capability to execute story lines
within 3D game engines. Many of these explicitly provided a tight coupling between
an AI system generating the story and the game engine used to execute the story line.
Pollack and Ringuette’s Tileworld [8] was one of the first systems to build a game-like
environment for executing the output of experimental agent architectures controlling
agents in unpredictable and dynamic worlds. Laird [5] created one of the initial systems
to connect an external AI controller – the SOAR Architecture [6] – to a commercial 3D
game engine. Young developed a system, Mimesis, which created virtual world narra-
tives using a bipartite approach of a story-world planner and discourse planner [14].
Cavazza and his collaborators [1, 2] also built a number of systems that were driven by
AI planning systems executing in game engines. Thuene et al. built the Virtual Story-
teller system [11], which is a framework for creating plot, narrative and presentation
of the narrative. Kapadia and his collaborators [4] developed a framework for author-
ing multi-agent environments with behaviors. Screenwriting software (e.g. [3, 7] allow
for features like tracking character trajectories, conflict, emotions, and even provide for
previsualizations of stories.

SHOWRUNNER expands the capabilities of related work by acting as a test-bed
where one could connect story input from a range of input sources: human authored,
computationally generated or computer-assisted. SHOWRUNNER hopes to provide one
common environment for execution of these experiences and provide one automated
pipeline towards that end.

3 System Overview

SHOWRUNNER provides a layer of abstraction over action execution in pre-defined
Unity game environments. These pre-defined game environments contain a set of data
structures and code that hold assets corresponding to the characters and their action
animations, objects, locations, and the code used to perform the actions of the story
world. Extending a SHOWRUNNER level is discussed briefly in Section 4.

SHOWRUNNER takes as inputs three elements: a specification of the actions in a
story, a (possibly empty) specification of a custom starting state for the story, and a data
dictionary that maps descriptors in the start state and action descriptions to correspond-
ing descriptors in the Unity game environment. The system first creates an internal
database used to map the input story references to game engine-internal objects. Next,
it modifies the starting state of the story world according to any customizations detailed
in the input files. Finally, it begins executing the actions enumerated in the story script,



ShowRunner: A Tool for Storyline Execution/Visualization in 3D Game Environments 3

ensuring that each one executes correctly. During execution, a camera system automat-
ically films the unfolding action, visualizing it for the user.

We have built and tested a Western cowboy-themed story world. We are developing
similarly instrumented story worlds for feudal Japan, medieval Europe and a dungeon-
focused fantasy world.

The SHOWRUNNER system is built using C# and its code and art assets exist within
a collection of scenes within the Unity game engine [13]. The system consists of a
number of customizable, modular components, described in more detail below.
Input and Output. SHOWRUNNER input consists of two required elements and one
optional element:

1. A Story Script. A story script is a file containing a declarative representation of the
actions in a story along with ordering dependencies between those actions.

2. A Mapping Definition. A mapping definition is a file containing associations be-
tween the symbols used as identifiers in the story script (i.e., action types, charac-
ters, locations and objects) and the unique IDs provided by SHOWRUNNER to the
corresponding Unity GameObjects in the story world scene.

3. An optional Initial State Description. An initial state description is used to specify
any ground literals whose truth value is required to be different than their truth
values in the default start configuration of the story world’s scene.

Output from SHOWRUNNER is a 3D visualization of the execution of the actions
in the story plan running within the virtual set of the story world. These actions are
filmed by virtual cameras pre-placed within the Unity scene. Dynamic camera selec-
tion is managed automatically by Unity’s Cinemachine [12] camera control system,
which optimizes camera selection based on visibility of target characters, user-defined
weights, and other cinematic factors.
The Story World’s Scene. The process of executing stories runs entirely within a Unity
scene. The scene specifies the virtual world of the story, the art and code assets for the
entities in the story as well as the code to manage the system’s behavior.

Each SHOWRUNNER Unity scene contains the following elements:

1. The virtual set. This set includes the 3D space of the story world, including build-
ings, exterior landscape and any objects in the story world that have no dynamic
state properties associated with them.

2. The world objects. World objects in SHOWRUNNER are Unity GameObjects that
have a physical representation in the story world and are distinguished from ele-
ments of the virtual set because characters can interact with them.

3. The character models. In our current implementation, the characters are human
figures, but future implementations may extend our character model set to include
horses, fantastical beasts, or other entities with agency. These are represented within
the game engine as Unity GameObjects with specific components.

4. The animations. Animations capture the movement of the elements of the 3D mod-
els of characters or the dynamics of other animated objects.

5. The animlocations. Animlocations are specially designated Unity GameObjects
that are placed within the virtual set. Each animlocation is associated with one or



4 Sanghrajka et al.

more animations and designates a physical location and orientation that any char-
acter model performing the associated animation must be placed in. These locator
objects serve a role similar to location vectors originally used by the Steve virtual
agent [9].

6. The action classes. Action Classes are C# classes that define the processes for run-
ning an individual story action in the story world. Each action class defines a set of
methods for checking that the action’s preconditions hold in the game world state,
performing the animations and game state changes that form the body of the ac-
tion, and confirming that the action has successfully established its effects in-game.
Action class methods are written as co-routines, allowing a form of concurrent exe-
cution between actions that are not temporally ordered with respect to one another.

7. The world’s virtual cameras. Virtual cameras are placed throughout the virtual set
and are accessed by the execution manager to provide the visualization of the story
world action as it unfolds.

8. The Execution Manager. The SHOWRUNNER Execution Manager is the main con-
trol point for the story’s execution in Unity. SHOWRUNNER is, in effect, a scheduler
responsible for initiating actions for execution and tracking the success/completion
of the methods used by each action’s action class instance.

Execution Manager. The Execution Manager operates in two phases: Start Up and
Running. In the start-up phase, the Execution Manager reads in the input files and first
creates a MapDB database that translates from story entity references to SHOWRUN-
NER -internal object references. Next, it reviews the content of the Initial State Revision
file, making any modifications to the game world the file specifies. Finally, it creates a
directed acyclic graph (DAG), where each node in the graph is one of the actions listed
in the input script. Orderings between nodes are created based on the partial ordering
over story actions specified in the script.

Once this execution DAG has been created, the Execution Manager switches to
Running Mode. The Execution Manager iterates in Running Mode by (a) checking to
see if the DAG is empty, in which case SHOWRUNNER halts, and (b) selecting the
minimal elements in the DAG and constructing a method call for each from the action
specifics in the node and Unity method names and GameObject references provided via
look-up in the MapDB. This method is then invoked with the identified parameters. As
the code for each action terminates, the code removes its corresponding node from the
DAG.

4 Discussion

SHOWRUNNER provides a useful level of abstraction away from the details of a game
engine’s coding and operation. SHOWRUNNER is designed to support at least two dis-
tinct use cases. One is its use essentially as an off-the-shelf story visualization tool. In
this use case, story scripts are built using references just to SHOWRUNNER ’s default
virtual set, characters and actions. In a power user use case, a user can create new ac-
tions by adding new action classes, animations, etc, within the SHOWRUNNER Unity
project. The code for the system is available in the project’s Gitlab repository [10].



ShowRunner: A Tool for Storyline Execution/Visualization in 3D Game Environments 5

References

1. Cavazza, M., Charles, F., Mead, S.J.: Character-based interactive storytelling. IEEE Intelli-
gent systems 17(4), 17–24 (2002)

2. Cavazza, M., Lugrin, J.L., Pizzi, D., Charles, F.: Madame bovary on the holodeck: immer-
sive interactive storytelling. In: Proceedings of the 15th ACM international conference on
Multimedia. pp. 651–660. ACM (2007)

3. Hollywood Camera Work: Causality story sequencer, https://www.
hollywoodcamerawork.com/causality.html

4. Kapadia, M., Singh, S., Reinman, G., Faloutsos, P.: A behavior-authoring framework for
multiactor simulations. IEEE Computer Graphics and Applications 31(6), 45–55 (2011)

5. Laird, J.E.: It knows what you’re going to do: adding anticipation to a quakebot. In: Pro-
ceedings of the fifth international conference on Autonomous agents. pp. 385–392. ACM
(2001)

6. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence.
Artificial intelligence 33(1), 1–64 (1987)

7. Marti, M., Vieli, J., Witoń, W., Sanghrajka, R., Inversini, D., Wotruba, D., Simo, I., Schriber,
S., Kapadia, M., Gross, M.: Cardinal: Computer assisted authoring of movie scripts. In: 23rd
International Conference on Intelligent User Interfaces. pp. 509–519. ACM (2018)

8. Pollack, M.E., Ringuette, M.: Introducing the tileworld: Experimentally evaluating agent
architectures. In: AAAI. vol. 90, pp. p183–189 (1990)

9. Rickel, J., Johnson, L.: Integrating pedagogical capabilities in a virtual environment agent.
In: Proceedings of the First International Conference on Autonomous Agents. pp. 30–38
(1997)

10. Sanghrajka, Rushit and Young, R. Michael and Salisbury, Brian and Lang, Eric W.:
ShowRunner GitLab Repo. GitLab (2019), https://eae-git.eng.utah.edu/
01221789/utahpia2

11. Theune, M., Faas, S., Nijholt, A., Heylen, D.: The virtual storyteller: Story creation by in-
telligent agents. In: Proceedings of the Technologies for Interactive Digital Storytelling and
Entertainment (TIDSE) Conference. vol. 204215 (2003)

12. Unity Technologies: Cinemachine, https://learn.unity.com/tutorial/
cinemachine

13. Unity Technologies: Unity, https://unity3d.com
14. Young, R.M.: Story and discourse: A bipartite model of narrative generation in virtual

worlds. Interaction Studies 8(2), 177–208 (2007)


