
LISA: Lexically Intelligent Story Assistant

Rushit Sanghrajka, Daniel Hidalgo, Patrick P. Chen and Mubbasir Kapadia
Department of Computer Science

Rutgers University

Abstract

This paper serves as an introduction to building an assistive
tool for story writers. Our tool, Lexically Intelligent Story
Assistant (or LISA), aims to assist story writers by provid-
ing real-time feedback on lexical inconsistencies in the story.
LISA analyzes the narrative and builds a knowledge base, us-
ing artificial intelligence to make inferences and point out
errors in the narrative. Moreover, it also allows the user to
interact with the system by querying the knowledge base in
natural language form. This tool shows that it is possible to
create a database for a narrative and use artificial intelligence
to improve authoring of stories.

1 Introduction
Many word processors come with the ability to detect mis-
spelled words and grammatical mistakes, but none come
with the functionality to detect plot-holes and logical errors
in narrative text. It is difficult to avoid contradictions when
multiple authors collaborate on one story. It is also difficult
to remember story specifics when the author resumes his
work after a span of time. In such cases, it becomes a chore
to go back and forth in the story looking for specifics about
the narrative.

Extraction of story knowledge from narrative text can al-
low inferences at any state of the story as well as verification
for new text to be consistent with the existing story world.
Besides making story writing an easier task, this allows for
groups of writers to maintain consistency as they contribute.
Moreover, there are “problem-solving situations where hu-
mans suffer from cognitive overload, failing to effectively
monitor all available information”(Laffey et al. 1988). This
can be applied towards the domain of writing stories as well,
and a tool that stores story knowledge can serve as a handy
solution.

The primary challenge to finding a solution is extracting
important facts from the natural language text. It also needs
to record and maintain the veracity of facts even when the
user modifies any part of the text. The third challenge in-
volves inferring implicit facts about agent actions, knowl-
edge and capabilities. The user should also be able to in-
teract with the information by accessing and querying it in

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

natural language form. Finally, the solution must reduce the
amount of work required by the user while providing these
capabilities.

The result of this research study is LISA, a lexically in-
telligent storytelling assistant application. LISA will allow
the user to extract and verify story world knowledge while
writing. LISA performs this task in real-time, while display-
ing errors with a description on the interface. LISA will also
provide an interface for querying the story facts processed.

LISA exemplifies the bare-bones characteristics of a word
processor with respect to analyzing narrative text. LISA al-
lows the user to create consistent narratives with the aid of
artificial intelligence methods. It also serves as a prototype
for a flagging interface and engine, allowing for real-time
AI-driven feedback during the process of story writing. Ad-
ditionally, it also demonstrates a questioning interface and
engine, allowing users to ask questions on story knowledge
and receive AI-driven responses.

LISA allows the user to modify previous sentences which
can change the entirety of the story knowledge base. Users
can also resume or edit an existing story while maintain-
ing the story knowledge base consistency. Additionally, the
questioning interface serves as a debugging tool to verify the
correctness of the story knowledge base. Moreover, LISA
uses the information from the natural language story sen-
tences and represents them as a tuple of their natural lan-
guage parts of speech (Toutanova et al. 2003).

The main contribution of this paper is to introduce LISA,
and describe the process involved in building an intelligent
agent which can process natural language stories, make in-
ferences about the information it processes, and interact with
the user in real-time during the process of building stories.
The interaction is both ways: it can provide feedback and
point errors in the story, and the user can ask questions about
the story.

2 Related Work
Extracting information from stories requires natural lan-
guage parsing of sentences and coreference resolution. LISA
uses the Stanford Core NLP toolkit (Manning et al. 2014),
dependency parser (Chen and Manning 2014) and corefer-
ence resolution system (Lee et al. 2013).

The concept of breaking down sentences to elements
has also been previously explored. (Carlson, Marcu, and



Okurowski 2003) use the concept of Elementary Discourse
Units (EDUs) while building a discourse-tagged corpus
in the Rhetorical Structure Theory framework. (Angeli,
Premkumar, and Manning 2015) also break a sentence into
“relation triples” by building three relevant clauses. Their
approach provides more informative triplets. (Kubler, Mc-
Donald, and Nivre 2009) also perform dependency parsing
using groupings. LISA also uses the concept of tuples to
break down its sentences into triplets.

The use of logical programming for analysis and fact-
checking has been demonstrated previously. (Bhattacharya
and Neamtiu 2011) demonstrate that a Prolog-based frame-
work can be elegant and powerful for real-world integrated
data, and can be used for development and empirical anal-
ysis tasks. Moreover, implementations of Prolog for other
languages, such as GNU Prolog, enable Prolog to be used
from other languages as well (Diaz and Codognet 2000).
LISA uses the GNU Prolog system for processing and infer-
ring, and provides fact-checking capabilities.

(Chen and Fahlman 2008) built the Scone knowledge
base, a dynamic mental context network. (Ginsberg 1988)
proposes ways to check knowledge bases for redundancy
and inconsistency. (O’Leary 1998) discusses various knowl-
edge base systems and how they’re driven by AI technolo-
gies. (Laffey et al. 1988) describe the requirements and limi-
tations of real-time knowledge base systems. (Ciampaglia et
al. 2015) build information networks or knowledge graphs,
check facts against them and report that it is more efficient
and scalable than expert fact-checking.

There are also existing implementations for rule-based
systems. (Hayes-Roth 1985) discusses that rule-based sys-
tems have many benefits, and automate problem-solving in
many scenarios. (Suwa, Scott, and Shortliffe 1982) discuss
the importance of rule-based systems being complete and
consistent. They show the importance of tagging errors and
preventing errors from being added to a knowledge base.
LISA uses artificial intelligence in the form of a rule-based
system, checking for errors as each error is an inference-
based rule.

David Elson’s thesis (Elson 2012) focuses on extracting a
knowledge base from stories, and works with Scheherazade
to understand the meaning of sentences. While Elson’s work
greatly contributes in the domain by providing valuable
ways to build a story world, it relies largely on the user to
verify the meanings it understands.

Melissa Roemmele (Roemmele 2016) uses neural net-
works to predict stories, and hence assist the user in writ-
ing stories by giving a possible scenario after the current
sentence. Her application Creative Help is a story assisting
tool similar to LISA, yet it differs in functionality by pre-
dicting stories rather than checking the existing story for in-
consistencies. Josep Valls-Vargas et al. introduce a system
Vox which performs information and character role extrac-
tion (Valls-Vargas, Zhu, and Ontanon 2016). This work is
highly useful for extracting information from the story re-
garding characters and events, and would extend LISA to be
used along with a character-centric system.

In Smith and Witten’s A Planning Mechanism for Gen-
erating Story Text (SMITH and WITTEN 1991), a gen-

Figure 1: Information flow in LISA

eral structure was defined to hold all information on a story
world. A connectivity relation called the “Cango rule” was
used as a way of enforcing causal links.

Boyang Li’s work in generating narrative intelligence and
determining causal links from a crowd-sourced narrative is
also an interesting approach to creating a script of a narrative
(Li et al. 2012). Michael Mateas’ work in interactive dra-
mas such as Facade also serves as notable examples of us-
ing narrative intelligence in drama and stories (Mateas and
Stern 2003; 2004). Shoulson et al. (Shoulson et al. 2013)
discuss an event-centric planning approach to story creation
for animation stories. Kapadia et al. (Kapadia et al. 2015)
talks about authoring narratives through interactive behav-
ior trees. One of our goals with LISA is to allow for story
world building for text-based stories, and these works form
an inspiration for LISA.

3 Framework Overview
Figure 1 shows the flow of the system as text stream is pro-
cessed in real-time to give the user immediate feedback.
LISA is the system that bridges user input to the back-end
knowledge base, using natural language parsing and infer-
encing tools to provide further insight to the user.
Natural Language Processing. LISA allows the user to
communicate in natural language, and for this purpose, nat-
ural language processing becomes a crucial element in the
process of assisting story writers. All the information stored
in the text is analyzed and extracted to consolidate enti-
ties and understand relationships through entities (Carlson,
Marcu, and Okurowski 2003). Natural language processing
also allows the user to ask questions in natural language,
which are processed into a specific format used to store and
query the knowledge base. The process is described in Sec-
tion 4.
User Interactions. Users can interact with LISA through
the narratives that they type in the story text. Interaction
with the application uses two systems. LISA’s query sys-
tem allows the user to interact with their own story by ask-
ing questions to it. It can then query the system’s knowl-
edge base for the result and provides the user with an an-
swer based on the question. The error system flags possi-
ble errors in the user’s story. Each time the user completes
a sentence in the front-end, LISA’s back-end determines
whether the sentence causes any logical inconsistencies. As
a brief overview, this algorithm considers the maximum self-
consistent set of ”known” facts and determines whether ex-



tending this set to include facts from the examined sentence
would logically lead to the existence of an error. Section 5
provides detailed information on this. Figure 2 displays the
various screens based on the user’s interactions.
Knowledge Representation and Reasoning. LISA keeps
track of information about the story and hence builds a
knowledge base regarding the events that have taken place
in the story. The knowledge base can store not only facts,
but it also stores a set of inferencing rules which can be
queried by the query system. Using the set of facts and rules
in the knowledge base, LISA runs an inferencing algorithm
in the back-end to produce second-order logic. Reasoning is
also used in a variety of ways to automatically detect incon-
sistency. Section 5 describes the working of the knowledge
base in detail.

4 Natural Language Processing
Natural Language Processing is an essential feature, and all
information that is input to the application is processed be-
fore it gets stored or queried to LISA’s knowledge base.
LISA’s natural language processing features enable users to
write stories in natural form, hence eliminating the need for
a new syntax to be developed for story-writing.
As depicted in figure 1, the user interface accepts inputs in
two forms: the story text stream, as well as the query system.
The user’s story text is processed every time the user enters
new text or edits an existing sentence, hence allowing for
real time analysis and processing. The query system allows
the user to ask questions and then processes the question into
a tuple and queries the knowledge base.

4.1 Story Text Stream Processing
The story text stream is processed into a number of tuples.
Tuples can be defined as a sequence of words that form
a block of information for LISA’s story knowledge base.
LISA’s natural language processor presently builds tuples
out of dependency-parsed groups of sentences (Kubler, Mc-
Donald, and Nivre 2009; Chen and Manning 2014). The ex-
ample in Fig 3 highlights the different tuples formed. The
following dependency parsings form tuples:

1. Noun subjects (nsub tags) are paired with direct objects
(dobj tags) when they have a common verb. The tuples
formed through this grouping have three words in them,
and form action tuples, since they describe an action tak-
ing place in the story.
Morevoer, these tuples can be considered to be of the form
afforder-affordance-affordee. The afforder and affordee
are passed on to the list of entity objects for LISA to take
into consideration.

2. Noun subjects (nsub tags) are paired with copula (cop
tags) and connected with the common tag. The pairings
are used to form two word tuples, and signify a state or an
attribute to a story entity.
These tuples form object-state pairs and get passed on to
the story knowledge base. Moreover, the object in this tu-
ple is passed on to LISA’s entity objects for tracking them.

3. Co-ordinations (cc tags) and conjunctions (conj tags) are
processed by LISA to understand and break down the

sentence to form multiple tuples of the types mentioned
above.
These tags do not contribute by forming their own tuples,
but allow for efficient processing of compound sentences
so that multiple action tuples can be extracted from the
sentence by LISA.

4. Phrasal verb particles (compound:prt tags) are paired
with noun subjects (nsub tags. These pairings form three
words, which describe an action, but have no affordee
specifically. These tags are appended to form three word
action tuples, with the action being a phrasal verb, and the
affordee being blank.
An example of a tuple generated from this kind of parsing
is shown in Fig 3. There is no affordee, and down needs
to be processed and passed into the knowledge base for
LISA to make sense of the information. The afforder in
this tuple is also passed into the user interface as an entity
object.

5. Adjectival modifier (amod tags) are also processed by
LISA, and are used to create tuples that simply act as ad-
jectives to an object. They’re processed into two-word tu-
ples and passed into the story knowledge base.
Each tuple of this type also has an object, which is passed
into LISA’s entity objects list.

LISA’s current implementation allows for these dependency
parsings to be processed, and also for more dependency
parsings to be processed in the future, further strengthening
LISA’s natural language processing capabilities.

4.2 User Queries
LISA allows the user to query the knowledge base by ask-
ing questions in natural language. The system assumes that
the user will ask a question involving one of the 8 interroga-
tive words: who, what, when, where, why, how, did, or does.
Using this set of keywords, a tuple can be formed using the
dependency parsings from above, which is used later to in-
dex the knowledge base to retrieve information. These tuples
are then queried to the knowledge base and results are dis-
played to the user in natural language by substituting X with
the result. An example for the tuples generated is shown in
Fig 3.

5 Story Centric Knowledge Representation
and Reasoning

It is imperative that LISA’s story-centric knowledge base ex-
cels in three important categories: run-time flexibility, logi-
cal capabilities, and case-by-case adjustability.

1. The knowledge base must be a flexible, growable set of
facts that is constantly open to change, because the user
can add to and delete from the story throughout run-time.

2. LISA’s intelligence must be capable of making logical de-
ductions from the facts it retains; otherwise, it wouldn’t be
more intelligent than a primitive bookkeeping device.

3. The machinery for the logical deductions must be ad-
justable for different contexts and genres: for example, a
fantasy genre may find it normal to have talking animals



Figure 2: LISA in action with Jack and the Beanstalk as an example story– (a) Error Message Feature: The highlighted text
says, “The giant plummeted down.” The error says, “Invalid Action Error: giant fell from beanstalk, but beanstalk was never
chopped down”; (b) The application with the Entity Type selection to add types to each entity.; (c) Querying example in action:
Query: “What does jack possess?”, Result: “jack possess cow”

Figure 3: Tuples being generated from sentences and ques-
tions.

and moving trees, while a historical setting should not as-
sume these events are possible unless the user specifies.

To accomplish this, LISA’s knowledge base implements
GNU’s library “Prolog for Java”, with inferencing deter-
mined by a set of Prolog rules (Diaz and Codognet 2000).
At this junction of the implementation, technical knowledge
is required to modify the rules of the story world before run-
time, although allowing the common user, with natural lan-
guage input, to modify the rules during run-time is a promis-
ing prospect for future versions.

5.1 Story Knowledge and Universe Rules
The components to construct the story-centric knowledge
base from the information extracted from the story input
stream are modularized primarily by separating story action
information (actions), entity trait information (traits), entity
type information (types), and error information (errors), and
modularized secondarily by distinguishing between explicit
story knowledge (facts) and universe rules (rules).

Fact sets are maintained during application runtime (re-

flecting changes in story text), and contain explicit story
knowledge from the story text stream. There is a one-to-
one correspondence between statements extracted from the
story and the union of the fact sets. LISA implements action
facts, denoted by FA, and trait facts, denoted by FT . FA

denotes the set of tuples (o1, a, o2) such that the story ex-
plicitly states that entity o1 has performed action a on entity
o2, with o2 possibly empty. Examples include (jack, visits,
market) or (giant, woke-up, ). FT denotes the set of tuples
(o, t) such that the story explicitly describes entity o with
the trait t. An example is (beanstalk, enormous).

A type set, maintained during application runtime via
user input, is a specialized set containing entity type infor-
mation for each entity. The type set is utilized as a third fact
set, and is denoted by Y . Y denotes the set of tuples (o, y)
such that the user has determined that entity o is of entity
type y. An example is (jack, human).

From here, let FS = FA∪FT∪Y denote the set of all facts
from the story. Let FU ⊃ FS be the space of all possible
facts from all possible entities, actions, traits, and types in
the story universe.

Rule functions, which are maintained before application
runtime (reflecting changes in the assumptions of the story
world), contain functions mapping possible facts from the
story universe to the power set of all explicit story facts.
Rule functions represent the universe rules that allow LISA
to deduce implied information from explicit story informa-
tion; thus, the function maps implied story knowledge to its
set of requisite explicit story knowledge. For example, con-
sider a rule r and an implicit fact f . We know that all facts
g ∈ FS are true because those are facts explicitly generated
from the story input stream. If r(f) ∈ FS , however, then we
also know that f is true, despite it not being explicitly stated.
The rule functions utilized by LISA are listed below:
• Let rA : FU → P(FU ) denote the rules for implied ac-



tions. That is, if rA(f) ∈ FS , then f = (o1, a, o2) is an
action that has occurred in the story. For example, if “X
buys Y ” is a fact from the story, we can conclude that “X
owns Y ”, even if the statement is not explicitly written in
the story.

• Let rE : FU → P(FU ) denote rules for inconsistency
checking. That is, if rE(e) ∈ FS , then there is some log-
ical error e caused by some combination of facts in FS .
This allows LISA to determine when an inconsistency ex-
ists in the story-centric knowledge base and provide use-
ful information for a user attempting to correct the incon-
sistency (see section 5.2).

• Let rT : FU → P(FU ) denote rules for implied traits.
That is, if rT (f) ∈ FS , then f = (o, t) is a true fact;
i.e., entity o must have trait t (in addition to its explicitly
stated traits). For example, if “X is killed” is a fact from
the story, we can conclude that “X is dead”, even if the
statement is not explicitly written in the story.

Thus, the set of facts that make up the concrete story-
centric knowledge base is represented as FS∪{f : rA(f) ∈
FS} ∪ {f : rT (f) ∈ FS}. An interesting note is that the
knowledge base can be constructed for any time interval of
the story by generating it anew from the unique FS (i.e., ex-
tracted story information) of that time interval (e.g., a spe-
cific paragraph of the story).

5.2 Error Attribution
When the knowledge base is given the task of determining
whether a specific sentence causes a logical inconsistency, it
checks the given sentence with the previous information in
the story. This is depicted in Algorithm 1.

The algorithm is summarized as follows: first, we con-
sider the input to be the statements from the story FS (pro-
cessed as described in Section 4.1 and Section 5.1). Using
predefined story universe rules K (e.g., if a human X per-
forms a sell action on an entity Y , and X does not have pos-
session of Y , then we can conclude there exists an error), on
any input set of statements, we can determine the Boolean
value of whether that set contains a logical error. By finding
out which subsets of the story statements contain errors, we
can identify where in the story an error originates from.

For LISA, these rules were programmed to return a help-
ful error message (e.g., ”Jack sold cow, but Jack does not
possess cow.”), with the ability to substitute story informa-
tion values into the error parameters (X = Jack, Y = cow).

6 User Interactions
LISA allows for writing new stories or continuing an ex-
isting story. An existing story can be imported using the
Upload Story button on the bottom of the interface which
prompts the user to select the text file which contains the
story. The text is copied into the Story text box. The Story
text box is a text editor that detects when a new sentence
is added or when an existing sentence is modified. Using
a thread to track the position of the delimiters in the story,
LISA ensures that each sentence is processed by the NLP
keeping the story knowledge up to date.

Algorithm 1: error attribution algorithm
input : An indexed sequence of n story fact sets

(Fi)i∈[n] : Fi ⊂ FS , as well as the
knowledge base of story universe rules and
story universe error rules
K = rA ∪ rT ∪ rE

output: A set of errors attributed to each story fact
set (Ei)i∈[n].

1 F ← ∅;
2 for i← 1 to n do
3 F ′ ← F ∪ Fi;
4 F ∗ ← F ′;
5 while F ∗ changed do
6 F ∗ ← F ∗ ∪ {x : (∃r ∈ K)(r(x) ∈ F ∗)};
7 Ei ← {e : rE(e) ∈ F ∗};
8 if Ei = ∅ then
9 F ← F ′;

Entities. LISA also displays all unique entities in the story
and adds any new ones as they appear in the text. The enti-
ties are paired with a tag resembling its type. The type for
each entity can be changed using the Handle types button on
the bottom of the interface. The default type for entities is
null which may create errors depending on the rules in the
Story World domain. The entities are extracted from the tu-
ples created by the NLP which end up being the afforders
and affordees in each event.
Story Knowledge. LISA displays the story knowledge ex-
tracted for each sentence under the Story Knowledge label
on the interface. Each sentence in the story corresponds to a
line in the story knowledge that shows the extracted knowl-
edge. If multiple tuples are extracted in a given sentence,
they are separated by a comma in the same line.
Error Information. Any inconsistencies or errors in the
knowledge base are highlighted in the Story text editor.
LISA uses a color coded system to distinguish the differ-
ent errors by highlighting the sentence in question. Mous-
ing over to the sentence displays the reasoning in the Error
Information text box. Once the error has been cleared, the
highlight will be removed and the error information cleared.
Questioning and Types. LISA has a text field that is used to
input questions or insert types. If a type is to be added, the
Add Type button will add the type into the list of types. The
list of types can be seen when handling types. If a question
is asked, pressing enter will start processing the question. A
new window will be displayed with the results.

7 Evaluation
Based on the design described in this paper, we developed
a LISA prototype. The system is designed in Java, and is a
swing application. The user interface and different features
in LISA are shown in Fig 2. The first screen shows the vari-
ous windows and information about the user interactions are
described in Section 6. For this study, we tested LISA out
with sections of a summary of Jack and the Beanstalk.

In order to be able to demonstrate LISA’s functionali-



ties, we arbitrarily marked down a few possible errors that
a writer may make while writing a story, such as making
mistakes in insignificant details. In the above example, the
writer could possibly make mistakes such as having a char-
acter give away something that they do not own, or doing an
action which requires an object they do not own. After these
possible errors were determined, we created inference rules
and added them to the story-centric knowledge representa-
tion and reasoning system. Hence, if a writer did make any
of the mentioned mistakes, the sentence would be flagged as
an error, as demonstrated in Fig 2. The other window shows
possible questions that a writer may ask the system along
with LISA’s responses.

A demonstration video was recorded and can be ac-
cessed here: https://goo.gl/PkmflE. The demon-
stration video shows the examples and errors for parts of
Jack and the Beanstalk. Additionally, a small-scale user
study task was designed to test similar features for LISA.
The users were given a demonstration of LISA’s features
and asked to perform a simple story task on a text editor and
then using LISA. The results for the user study were incon-
clusive; there was no time difference between the attempts
involving LISA and involving a simple text editor. Due to
the small scale of the task, further research and user study
is required to complete accurate evaluation on LISA and its
benefits over a normal text editor.

8 Conclusion
Limitations and Complications. While LISA acts as a tool
introducing a new approach to storytelling, LISA also opens
doors for a lot of questions. The core of LISA’s efficiency
lies in the rules that it checks its facts against. These rules,
if broken, cause errors, which are then highlighted and dis-
played to the user. In the current implementation, the rules
have been added manually by the researchers, and were tai-
lored to the task performed in the user study. LISA’s error
checking capabilities are only as powerful as the informa-
tion stored in the story-centric knowledge reasoning system.
In order for LISA to apply for complex real-world story-
telling, the system must be able to automatically generate
rules and enforce them on stories.

LISA heavily relies on natural language processing.
Therefore, its accuracy also is a factor of the accuracy of
the natural language parser. In the current implementation of
LISA, the parsing of the tuples only takes certain nodes of
the parse tree into consideration. This forms a limitation: the
complexity of the sentences in the stories determine the ac-
curacy of the knowledge base in the current implementation.
Future work in LISA will involve exploring other informa-
tion extraction annotators such as Stanford’s OpenIE (An-
geli, Premkumar, and Manning 2015), and optimizing the
accuracy and completeness of information extracted from
stories.

Another complication stems from choosing the right plat-
form for the knowledge reasoning and inferencing system.
The current implementation of LISA uses Prolog for infer-
encing. Because Prolog doesn’t take order into considera-
tion by default, LISA’s current story knowledge base is time
agnostic. Possible workarounds to this can be identifying

story by assigning identity tags, and using them in the prolog
facts. Prolog also uses symbolic reasoning over probabilistic
reasoning, which limits the reasoning capabilities. This cur-
rently forms a limitation but can also be further explored by
adding confidence as a factor. The system currently has no
way to record uncertainty about events.

The user-friendliness of the application also forms a bot-
tleneck for the error information provided by the system.
This is a trade-off between providing the user with as much
error information possible and how to fix it, while mak-
ing the application user-friendly simultaneously. LISA uses
some amount of input from the user through the entities win-
dow, but choosing to limit user clarification leads to uncer-
tainty, where LISA cannot accurately infer knowledge with-
out further clarification from the user. Presently, LISA high-
lights the sentence with the error, and then when the user
moves the cursor to the highlighted sentence, it describes
the error in the error window. This error display mechanism
might not be sufficient for more complicated errors that may
span across more than a sentence.
Future Work. The knowledge inferencing system needs
more research in order to make it more exhaustive and ro-
bust. Future work to improve LISA’s error-detection capa-
bilities could focus on connecting to a database online which
provides common knowledge regarding the usage and mean-
ing of words used in stories. There are existing datasets,
such as Wordnet (Miller 1995) and Verbnet (Schuler 2005),
that provide a lexical database. Moreover, natural language
parsing systems have also been built with inbuilt integration
to Wordnet (Lee et al. 2011). Integration of these lexical
databases can assist in detecting more lexical errors and as-
sisting the authoring of lexically correct narratives.

Another possible approach is to use LISA with another
knowledge based system. Moreover, various knowledge
based systems can be analyzed to look for optimal systems
for LISA. The knowledge base could be event-centric or
character-centric. Character-centric knowledge bases could
be tackled using the Scone knowledge base system (Chen
and Fahlman 2008). Adding a character-centric knowledge
system would allow for asking questions to different char-
acters in the story and could potentially be used to analyze
different character’s answers to the same questions based on
their knowledge.

Future work in knowledge representation and reasoning
for stories also needs to expand on more than encoding just
actions from stories. Stories can contain complex structures,
and it may be interesting to be able to recognize irony, sar-
casm and other metaphorical information and extract it. It
could also be possible to check for errors and loopholes
in the metaphors used by the writers, or any contradictions
in the meta-information inferred from the forms of speech
used.

While LISA deals with text-based stories, it’s knowledge
base could also be extended to other forms of media. Fu-
ture work in LISA could include collaborations with other
libraries such as the CANVAS library (Kapadia et al. 2016)
as a plug in to be able to understand different affordances
and provide feedback in animation format as well.



References
Angeli, G.; Premkumar, M. J.; and Manning, C. D. 2015.
Leveraging linguistic structure for open domain information
extraction. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics (ACL 2015).
Bhattacharya, P., and Neamtiu, I. 2011. A prolog-based
framework for search, integration and empirical analysis on
software evolution data. In Proceedings of the 3rd Interna-
tional Workshop on Search-Driven Development: Users, In-
frastructure, Tools, and Evaluation, SUITE ’11, 29–32. New
York, NY, USA: ACM.
Carlson, L.; Marcu, D.; and Okurowski, M. E. 2003. Build-
ing a discourse-tagged corpus in the framework of rhetorical
structure theory. In Current and new directions in discourse
and dialogue. Springer. 85–112.
Chen, W., and Fahlman, S. E. 2008. Modeling mental con-
texts and their interactions. In AAAI Fall Symposium: Bio-
logically Inspired Cognitive Architectures, volume 8, 04.
Chen, D., and Manning, C. D. 2014. A fast and accurate
dependency parser using neural networks. In EMNLP, 740–
750.
Ciampaglia, G. L.; Shiralkar, P.; Rocha, L. M.; Bollen, J.;
Menczer, F.; and Flammini, A. 2015. Correction: Computa-
tional fact checking from knowledge networks. PLOS ONE
PLoS ONE 10(10).
Diaz, D., and Codognet, P. 2000. The gnu prolog system
and its implementation.
Elson, D. 2012. Modelling Narrative Discourse. Ph.D.
Dissertation, Columbia University.
Ginsberg, A. 1988. Knowledge-base reduction: A new ap-
proach to checking knowledge bases for inconsistency and
redundancy. In AAAI, volume 88, 21–26.
Hayes-Roth, F. 1985. Rule-based systems. Commun. ACM
28(9):921–932.
Kapadia, M.; Falk, J.; Zünd, F.; Marti, M.; Sumner, R. W.;
and Gross, M. 2015. Computer-assisted authoring of inter-
active narratives. In Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, i3D ’15, 85–92. New
York, NY, USA: ACM.
Kapadia, M.; Frey, S.; Shoulson, A.; Sumner, R. W.; and
Gross, M. 2016. Canvas: Computer-assisted narrative
animation synthesis. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
SCA ’16, 199–209. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association.
Kubler, S.; McDonald, R.; and Nivre, J. 2009. Dependency
parsing. Morgan and Claypool Publishers. Synthesis Lec-
tures on Human Language Technologies.
Laffey, T. J.; Cox, P. A.; Schmidt, J. L.; Kao, S. M.; and
Readk, J. Y. 1988. Real-time knowledge-based systems. AI
magazine 9(1):27.
Lee, H.; Peirsman, Y.; Chang, A.; Chambers, N.; Surdeanu,
M.; and Jurafsky, D. 2011. Stanford’s multi-pass sieve coref-
erence resolution system at the conll-2011 shared task. In
Proceedings of the Fifteenth Conference on Computational

Natural Language Learning: Shared Task, 28–34. Associa-
tion for Computational Linguistics.
Lee, H.; Chang, A.; Peirsman, Y.; Chambers, N.; Surdeanu,
M.; and Jurafsky, D. 2013. Deterministic coreference reso-
lution based on entity-centric, precision-ranked rules. Com-
putational Linguistics 39(4):885–916.
Li, B.; Lee-Urban, S.; Appling, D. S.; and Riedl, M. O. 2012.
Crowdsourcing narrative intelligence. Advances in Cogni-
tive Systems 2(1).
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Inc,
P.; Bethard, S. J.; and Mcclosky, D. 2014. The stanford
corenlp natural language processing toolkit. In In ACL, Sys-
tem Demonstrations.
Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. In Game devel-
opers conference, volume 2.
Mateas, M., and Stern, A. 2004. A behavior language:
Joint action and behavioral idioms. In Prendinger, H., and
Ishizuka, M., eds., Life-Like Characters, Cognitive Tech-
nologies. Springer Berlin Heidelberg. 135–161.
Miller, G. A. 1995. Wordnet: A lexical database for english.
COMMUNICATIONS OF THE ACM 38:39–41.
O’Leary, D. E. 1998. Using ai in knowledge management:
Knowledge bases and ontologies. IEEE Intelligent Systems
and Their Applications 13(3):34–39.
Roemmele, M. 2016. Writing Stories with Help from Re-
current Neural Networks. In AAAI Conference on Artificial
Intelligence; Thirtieth AAAI Conference on Artificial Intelli-
gence, 4311 – 4312. Phoenix, AZ: AAAI Press.
Schuler, K. K. 2005. Verbnet: A Broad-coverage, Compre-
hensive Verb Lexicon. Ph.D. Dissertation, Philadelphia, PA,
USA. AAI3179808.
Shoulson, A.; Gilbert, M. L.; Kapadia, M.; and Badler, N. I.
2013. An event-centric planning approach for dynamic real-
time narrative. In Proceedings of Motion on Games, 121–
130. ACM.
SMITH, T. C., and WITTEN, I. H. 1991. A planning mecha-
nism for generating story text. Literary and Linguistic Com-
puting 6(2):119–126.
Suwa, M.; Scott, A. C.; and Shortliffe, E. H. 1982. An ap-
proach to verifying completeness and consistency in a rule-
based expert system. Ai Magazine 3(4):16.
Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Com-
putational Linguistics on Human Language Technology-
Volume 1, 173–180. Association for Computational Linguis-
tics.
Valls-Vargas, J.; Zhu, J.; and Ontanon, S. 2016. Error
analysis in an automated narrative information extraction
pipeline. IEEE Transactions on Computational Intelligence
and AI in Games PP(99):1–1.


